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Introduction
Machine reading comprehension (MRC) with unanswerable questions is a
central task in NLU. It requires the the machine to predict the correct
answer as well as to determine the answerability on the given passage.

Figure 1: An example of SQuAD2.0 〈Question, Context, Answer〉 triple1

I The paragraphs are from Wikipedia and half questions are not
answerable.

I If a question is answerable, then the answer is a span of text in the
context paragraph.

1Check more examples on the challenge website:
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/
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Motivation

Retrospective Reader: proposed by Zhang et al. (2020). It’s shown
that the retro-reader over ELECTRA backbone improves both the EM
and F1 significantly and achieves the state-of-art results. It mimics
human reading in the following way:
I scan the text to get a coarse judgement → sketchy reading module
I read the text again to determine the final answer → intensive

reading module + rear verification

Goal: examine the effectiveness of the retrospective reading idea along
the non-PCE(Pre-trained Contextual Embeddings) track.

Retro-BiDAF: retrospective reading + BiDAF (Seo et al., 2016)
backbone + GloVe word embeddings.
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Retro-BiDAF Model Architecture

Figure 2: Retro-BiDAF Model Architecture
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Sketchy Reading Module

Figure 3: Sketchy Reading Module

1. Embedding: GloVe word embeddings + a projection layer + a
Highway Network

2. Encoder: a one-layer bidirectional LSTM
3. Attention: a bidirectional attention flow layer to get better context

representations.
4. Refining: a two-layer bidirectional LSTM to incorporate the

temporal information between context conditioned on the question.
5. External Front Verification (E-FV): a fully connected layer to get

classification logits.
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Sketchy Reading Module (Con’t)

Training Objective: Binary Cross Entropy loss

Lans = −1
n

n∑
i=1

[yi log ŷi + (1− yi ) log(1− ŷi )],

where ŷi ∝ SoftMax (Linear (mN)) denotes the predicted probability by
E-FV, yi is the binary target indicating the answerability, and n is the
number of samples in the training dataset.
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Intensive Reading Module

Figure 4: Intensive Reading Module

Internal Front Verification (I-FV): a fully connected layer to get
classification logits.

Lans = −1
n

n∑
i=1

[yi log y i + (1− yi ) log(1− y i )],

where y i ∝ SoftMax (Linear (mN)) denotes the predicted probability by
I-FV and yi is the binary target indicating the answerability.
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Intensive Reading Module (Con’t)
Span Prediction: a one-layer bidirectional LSTM + two fully connected
layers + softmax to get the soft prediction probabilities s, e ∈ RN .

Training objective: the sum of the cross entropy loss for the start and end
predictions,

Lspan = −1
n

n∑
i=1

[log(sy s
i
) + log(ey e

i
)],

where sk is the probability that the answer starts at position k in the
context, and el is the probability that the answer ends at position l in the
context, and y si , y

e
i are the target start and end positions of example i .

Joint Loss: span prediction and I-FV are trained jointly.

L = α1Lspan + α2Lans ,

where are α1 and α2 are weights.

9 / 21



Inference

Figure 5: RV + TAV

Rear Verification (RV): aggregate the predicted probabilities given by
E-FV (ŷ)and I-FV (y).

v = β1ŷ + β2y ,

where β1 and β2 are weights.
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Inference (Con’t)

Threshold-based Answerable Verification (TAV): with a pre-specified
threshold δ, predicts the answer span if scorediff > δ and N/A otherwise.

scorehas = max(sk · el), 1 ≤ k ≤ l ≤ N,

scorena = λ1(s0 · e0) + λ2v
2,

scorediff = scorehas − scorena.

where λ1 and λ2 are weights.

Discretized Predictions: Choose the pair (k , l) of indices that
maximizes sk · el subject to k ≤ l and l − k + 1 ≤ Lmax, where Lmax is a
hyperparameter.
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Experiment Setup

I BiDAF baseline model: Adadelta optimizer with learning rate 0.5, no
L2 penalty. The batch size per GPU is 64 and the number of epochs
is 30 (plateau at epoch 22).

I Sketchy reader: Adam optimizer with a warm-up learning rate 0.02.
The number of epochs is 10(plateau at epoch 5).

I Intensive reader: similar to the BiDAF baseline model except the
number of epochs is 50 (plateau at epoch 47).

I Weights: α1 = α2 = β1 = β2 = λ1 = λ2 = 0.5.
I The threshold δ = −0.006 is tuned w.r.t. F1 using the dev set.
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Experiment Results

Evaluation Metrics
I Exact Match (EM): a binary measure of whether the output matches

the ground truth answer exactly.
I F1: the harmonic mean of precision and recall.
I Answer vs. No Answer (AvNA): classification accuracy when we only

consider answerability prediction.
Evaluation Results

Model
Dev

EM F1 AvNA
BiDAF baseline 58.28 55.13 64.70
Retro-BiDAF 61.15 59.45 63.94

Table 1: The results (%) from single models for SQuAD2.0 challenge.
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Prediction Examples I

Figure 6: Both models succeed on answerable questions
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Prediction Examples II

Figure 7: Both Models fail on answerable questions
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Prediction Examples III

Figure 8: Retro-Reader outperforms baseline
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Prediction Examples IV

Figure 9: Baseline outperforms retro-reader
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Conclusion

I Retro-BiDAF is proposed to check the effectiveness of retrospective
reading along the non-PCE track.

I The idea of retrospective reading indeed helps improve the model
performance with respect to EM and F1.

I More effort is needed to investigate the downgrade of AvNA.
I Code and report are accessible at:

https://github.umn.edu/YANG6367/squad.
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