UMVU

Step 1: exponential family : Find out T as complete
involves
$$1_{\{T \in B\}}$$
 : T as sufficient

If involves
$$I_{\{T < \theta\}}$$
 or $I_{\{T > \theta\}}$, then
 $ES(T) = g(\theta)$, take derivative.
If not, use Taylor series, $S(T) = \sum_{n=0}^{\infty} C_n T^n$,
 $ES(T) = g(\theta)$

match the coefs of polynomial terms.

Convergence

$$D \quad a.s. \quad convergence$$
(i) Borel - Cantelli lemma
$$An = |Xn - X| > \varepsilon$$

$$\sum_{n} P(A_n) < \infty$$

equivariant estimator
Step 1 = Get the density, find the complete
and sufficient statistics T
Step 2 : Try to find
$$So(x)$$

(i) T
(ii) T
(iii) usual mean, median, MLE
(iii) order statistics
Step 3 : Check the loss
(i) (ors is general
 $V^* = argmin E_0 [P(So(x) - V)|Y]$
(ii) loss is squared loss
 $V^* = E_0 [So(x)|Y]$
(iii) loss is absolute loss
 $V^* = median of So(x)|Y$
(iv) if Y is ancillary, $So(x)$ is T,
then $V^* = argmin E_0 [P(So(x) - V)]$
(V) if Y is n-1 dimensional, $V^* = c$

Step 4: If
$$f(x_1, -3, ..., x_n - 3)$$
 is easy to get,
(i) general $p(.)$
 $S^* = \arg\min_d \frac{\int p(d-u) f(x_1-u, ..., x_n-u) du}{\int f(x_1-u, ..., x_n-u) du}$

(ii) p is squared loss

Pitman estimator

$$S^*(X) = \frac{\int u f(X_1 - u, \dots, X_n - u) du}{\int f(X_1 - u, \dots, X_n - u) du}$$

Prove convergence in probability

- (2) Markov's inequality, $P(|x| > \varepsilon) = \frac{E|x|}{\varepsilon}$
- (3) Chebychev's inequality, $P(|x-\mu| > \varepsilon) = \frac{Var X}{\varepsilon^2}$

EM algorithm

X is the incomplete data. Y is the complete data.

$$E \operatorname{-step} : \Upsilon^{(P)} = E[\Upsilon|X, O^{(P-1)}]$$

$$M \operatorname{-step} : under \Upsilon, get MLE \Theta = S(\Upsilon)$$

$$O^{(P)} = S(\Upsilon^{(P)})$$

For mixture model, such as the following.
Xi
$$\sim \int_{j=1}^{m} P_j \sqrt{\frac{1}{22\sigma_j^2}} e^{-\frac{(X_i - M_j)^2}{2\sigma_j^2}}$$

Include
$$Y$$
, $P(Y=j) = Pj$
then $L(X,Y;\theta) = \prod_{i=1}^{n} Py_i \sqrt{\frac{1}{2\pi\sigma y_i^2}} e^{-\frac{(Xi-My_i)^2}{2\sigma y_i^2}}$