Q1: For $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 > 0$ test statistic is $t = \frac{\hat{\beta}_1}{\text{se}(\hat{\beta}_1)}$ why do we reject H_0 when t is very small?

Intuitively, this makes sense. But how to get this from strict mathematical proof?

Al: (Credit goes to Ganghua.)

The family of normal densities has monotone likelihood ratio property. By Thm 12.9 on Keener's book ("Theoretical Topics for a Core Course"), $\varphi^*(x) = \begin{cases} 1 & T(x) > c \\ 0 & T(x) \geq c \end{cases}$ will be the UMP test,

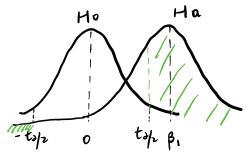
which means uniformly most powerful.

And by checking the density of normal dist, we can show that

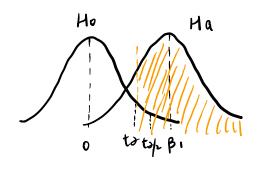
can show that
$$\varphi(x) = \int_{0}^{\infty} \frac{1}{se(\hat{\beta})} > c$$

$$f(x) = \int_{0}^{\infty} \frac{1}{se(\hat{\beta})} > c$$
is equivalent to $\varphi^{*}(x)$.

Or we can use graphic understanding.



If the rejection region is $\{|t| > t_{d/2} \}$ the power would be the shadowed area [m].



If the rejection region is f(t) > t > t > t, the power would then be the shadowed area [m].

The power in the second case is larger than that in the first case, which then validates the choice of rejection region.